クオンツ運用とは数量的な分析に基づく運用のことで、運用業界の慣用的な表現だ。通常、コンピューターで大量のデータを処理し、あらかじめ決められたプログラムに基づいてポートフォリオを動かすような運用を指す。俗に「システム運用」などと呼ばれることがある。データ処理が「数量的」であることと、運用が「プログラムされている」こととは、本質的には別々の性質だが、統計的に抽出した何らかの性質をそのまま運用に生かそうとするアプローチの性質上、両者が一致していることが多い。
同時に統計的な性質をポートフォリオに反映させようとするアプローチの性質上、株式運用の場合、数十銘柄から数百銘柄に及ぶ銘柄数を保有することが多く、アプローチとしては機関投資家向け(年金運用、投資信託からヘッジファンドまで幅広く)の運用手法ということになるが、運用方法の長所・短所を考える上では、個人の運用の参考にもなるだろう。
(1)よく指摘される弱点
クオンツ運用の弱点としてよく指摘されるのは、(1)過去のデータに基づくので市場環境の変化に弱い、(2)運用ルールが硬直的、(3)真似されやすい、といった点だ。
これらのうち、最も本質的な批判は(2)だろう。(1)と(2)は深く関連しているが、より本質的なのは(2)の方だと思う。過去のデータに基づいて運用に関する判断を行うとしても(残念ながら、未来のデータに基づくことは不可能だ)、たとえば2008年の4月時点では2008年3月までのデータを使って運用方法を考えればいいが、2008年の10月になる時点でも2008年4月に考えた運用方法を使っているとすると、2008年の4月から9月までの情報が運用に反映していないことになる。理屈上は、運用の方法全体も含めて、各時点時点で判断を行えばよく、過去の方法を将来にそのまま当てはめるのは怠慢だ。
一方、面白いことに、運用業界の人も含めて、世間の人がクオンツ運用を褒めるポイントもここにあることが多く、「システム運用は、その時々の人間の相場観に影響されない点がよい」と讃えられることがしばしばある。確かに、その時々のムードに影響されて投資家が判断を誤ることはよくあるから、こう言いたくなる気分は分からなくもないが、本当は賢くない。プログラム化された運用は、いわば最初の時点で「こういう時には、こうするのがいい」という頑固な相場観が注入されているのであって、システム運用に相場観がないというのは誤りだ。
真似されやすい、という点については確かにそういう側面もある。ただ、似たような観点で似たような銘柄が買われるという現象は、ファンダメンタルズに基づく運用でも普通にあることで、この場合は、アナリストやファンドマネジャーなど人間が判断に介在するので、真似に気づきにくいだけだ。クオンツ運用の場合、ポートフォリオをコントロールするプログラムを完全にコピーされると似た運用ができやすいだけに、真似の可能性が強調されることが多く、商売上は、何らかの有り難みのある「ブラックボックス」の存在を主張することが多い。
ただ、料理で言えば、レシピを完全に公開しても作り手によって味の差があるように、ポートフォリオの運用も実際上の細かな手順まではプログラムに書き尽くせない場合が多く、運用者の立場から見ると、完全に同じ運用というのは、案外少ない筈だと思う。
余談だが、年金運用のコンサルタントの運用会社に対するヒアリングなどに立ち会い、半可通のコンサルタントが運用の仕組みを根掘り葉掘り聞いた後で「この方法は他社にも真似できるのではないか。御社の独自性はどの部分にあるのか」などと質問するのを聞いて、「ろくに分かっていないくせに、質問だけは面倒だな」などと可笑しく思ったことがあったが、こういう相手にももっともらしく受け答えしなければならないのが年金運用の商売だ。手続きに納得すれば、どこかの運用機関を選んで推薦してくれるのだから、丁重に扱うに限る。
(2)「基準化」で失われる情報
さて、前記の(1)、(2)に関連して、クオンツ運用のよくあるアプローチに系統的な弱点が一つあるように思うので、以下に書いておく。 端的に言って、データを加工する際の手順で重要な情報が失われているのではないかということだ。
例としてバリュー運用を考えてみよう。最もシンプルに低PERのポートフォリオについて検証しようとすると、クオンツ運用の運用者は、典型的には以下のような手順を取る。
- 過去のそれぞれの時点に関して銘柄毎のPERのデータを集める。
- PERのデータを偏差値に基準化する(大まかに言うと、生データと母集団の平均の差を取ってこれをデータの標準偏差で割った数字に変換する)。
- 偏差値に比例したアクティブ・リターンを個々の銘柄に与える。
- アクティブ・リターンとアクティブ・リスクを最適化させるように(通常はオプティマイザーと呼ばれるプログラムを使って)ポートフォリオの最適化計算を各時点に対して行う。
- 各時点の情報を使って最適化されたポートフォリオをつなげた場合の運用パフォーマンスを測定して、結果が よければ、「よし!」とつぶやく。
- 実は、ここから後のいわば「チューニング」が現実的には重要なのだが、説明に関係ないので以下のプロセスは省略する。
基準化とは、大まかにどんなイメージかというと、たとえばPER20倍が平均で、銘柄ごとのPERのバラツキの標準偏差が5 (倍)であった場合、PER15倍の銘柄については「+1.0(標準偏差)」のスコアを与えるのが基準化の作業だ。相対的に高くも安くもない銘柄のスコアは0.0になる。このように、データを標準偏差単位に基準化しておいて、1標準偏差= 2%といった調子でこれに比例したアクティブ・リターン(市場平均を上回るリターン)の期待値を与えてポートフォリオを作り、そのポートフォリオのパフォーマンスをテストするのだ。基準化の際に、データは「絶対値」と「バラツキの大きさ」を情報として失うのだ。
これはちょうど、模擬試験の点数を偏差値に変換することによって、その年の受験生の絶対的レベルの情報が失われたり、点数のバラツキの大きさが調整されてやはり情報としては捨象されたりすることと似ている。模擬試験の場合は、その集団が本番の試験に臨んで、相対的な点数で勝負するので、偏差値をベースとした情報処理で受験戦略を考えても大きな問題がなさそうだが、ポートフォリオの運用ではどうなのか。
(3)ファンド選択の系統的間違い
ここで、運用会社が自社の運用の考え方を説明するときによく使う言い回しを思い出すと、彼らは、「価格の歪みが修整されるプロセスを利用して超過リターンを獲得する」というような言い方をする。これを、PERを基にしたバリュー運用に当てはめると、相対的にPERが低い銘柄のミス・プライシング(価格形成の誤り)が修整されるプロセスを利用してアクティブ・リターンを獲得することを目指す運用だ、ということになる。
ただ、ここで、過去のデータのテストと今後の運用パフォーマンスの関係について考えると、過去にこの戦略の成績が よかったということは、たとえばPERの絶対的なバラツキが観測期間にあって縮小した結果だと考えることができる。
データを基準化してしまうと、たとえばPERの平均が同じ20倍だった場合でも、一標準偏差が8(倍)だったのか4(倍)だったのかといったデータの性質が消えてしまう。仮に、一標準偏差が8倍から4倍に縮小するような変化が起こった場合、利益に大きな変動がなければ、運用者の考えの通りに「価格の歪みが縮小した」ことになるが、問題はこの価格修整が今後も継続しうるかどうかということだ。このケースの場合、PERの相対的格差が縮小しすぎたか、縮小しすぎになっていないまでも今後の修整のポテンシャルをあらかた使い尽くしてしまった状況である可能性が大きい。
また、平均値についても、たとえば市場の平均PERが40倍の時の低PER効果と、17倍の時の低PER効果では、効果が異なる可能性が大いに考え得る。
こうした問題が繰り返し頻繁に起こっていると思われるのは、ヘッジファンドの選択だ。ヘッジファンドを選択する場合、「トラックレコード」と称する、直近過去の運用成績を見て、これが優れているものを採用する傾向が強いが、こうしたファンド選択を行うことで、「ポテンシャルを使い尽くした残り滓」のようなファンドを選んでいる可能性が大きい。
運用の舞台裏を考えると、トラックレコードが「運用の腕」を表しているのだと素朴に信じてはいけない場合が多い筈だ。そもそも成功報酬の条件(特にヘッジファンドの場合、運用者側が有利だ)で資金をヘッジファンドに預けること自体がファイナンス的意思決定としてはあまり利口でない場合が多いのだが、ファンドの選択でも自分勝手な解釈で間違いを犯すことが多いようだ。こうした間違いは、大なり小なりレバレッジが掛かっていない通常の投資信託の評価にも当てはまることがあるので、個人投資家も注意が要る。
クオンツ運用の話に戻ると、基準化したデータで過去を調べることと共に、生データの平均と標準偏差自体の変化を調べることが重要だろうということだ。典型的なクオンツ運用のプロセスや株式ポートフォリオをコントロールするマルチ・ファクター・モデルと呼ばれるソフトウェアなどのデータ処理から見て、この点が盲点になっている可能性は小さくないと思う。
もちろん、この現象はコンピューターによる数量分析に頼らない場合にも重要だから、個人投資家も、たとえば割安・割高ということを考える場合に、注目した尺度の絶対値やそのバラツキにも注目するといいだろう。
本資料は情報の提供を目的としており、投資その他の行動を勧誘する目的で、作成したものではありません。銘柄の選択、売買価格等の投資の最終決定は、お客様ご自身の判断でなさるようにお願いいたします。本資料の情報は、弊社が信頼できると判断した情報源から入手したものですが、その情報源の確実性を保証したものではありません。本資料の記載内容に関するご質問・ご照会等には一切お答え致しかねますので予めご了承お願い致します。また、本資料の記載内容は、予告なしに変更することがあります。
本コンテンツは情報の提供を目的としており、投資その他の行動を勧誘する目的で、作成したものではありません。銘柄の選択、売買価格等の投資の最終決定は、お客様ご自身でご判断いただきますようお願いいたします。本コンテンツの情報は、弊社が信頼できると判断した情報源から入手したものですが、その情報源の確実性を保証したものではありません。本コンテンツの記載内容に関するご質問・ご照会等には一切お答え致しかねますので予めご了承お願い致します。また、本コンテンツの記載内容は、予告なしに変更することがあります。